Comparison of different 2 order formulations for the solution of the 2D groundwater flow problem over irregular triangular meshes
نویسندگان
چکیده
Mixed and Mixed Hybrid Finite Elements (MHFE) methods have been widely used in the last decade for simulation of groundwater flow problem, petroleum reservoir problems, potential flow problems, etc. The main advantage of these methods is that, unlike the classical Galerkin approach, they guarantee local and global mass balance, as well the flux continuity between inter-element sides. The simple shape of the control volume, where the mass conservation is satisfied, makes also easier to couple this technique with a Finite Volume technique in the time splitting approach for the solution of advection-dispersion problems. In the present paper, a new MHFE formulation is proposed for the solution of the 2D linear groundwater flow problem over domain discretized by means of triangular irregular meshes. The numerical results of the modified MHFE procedure are compared with the results of a modified 2 spatial approximation order Finite Volume (FV2) formulation [2], as well as with the results given by the standard MHFE method. The FV2 approach is equivalent to the standard MHFE approach in the case of isotropic medium and regular or mildly irregular mesh, but has a smaller number of unknowns and better matrix properties. In the case of irregular mesh, an approximation is proposed to maintain the superior matrix properties of the FV2 approach, with the consequent introduction of a small error in the computed solution. The modified MHFE formulation is equivalent to the standard MHFE approach in both isotropic and heterogeneous medium cases, using regular or irregular computational meshes, but has a smaller number of unknowns for given mesh geometry. Key-Words: groundwater, finite elements method, mixed hybrid finite elements method, finite volumes method, positive-definite matrix, M-property, Raviart-Thomas basis function
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملComparison between the MHFEM formulation and a 2 nd spatial order FV formulation of the linear groundwater flow problem
Mixed and Mixed Hybrid Finite Elements (MHFE) methods have been widely used in the last decade for simulation of groundwater flow problem, petroleum reservoir problems, potential flow problems, etc. The main advantage of these methods is that, unlike the classical Galerkin approach, they guarantee local and global mass balance, as well the flux continuity between inter-element sides. The simple...
متن کاملSecond-Order Accurate Godunov Scheme for Multicomponent Flows on Moving Triangular Meshes
This paper presents a second-order accurate adaptive Godunov method for twodimensional (2D) compressible multicomponent flows, which is an extension of the previous adaptive moving mesh method of Tang et al. (SIAM J. Numer. Anal. 41:487–515, 2003) to unstructured triangular meshes in place of the structured quadrangular meshes. The current algorithm solves the governing equations of 2D multicom...
متن کاملMonotonic solution of flow and transport problems in heterogeneous media using Delaunay unstructured triangular meshes
Transport problems occurring in porous media and including convection, diffusion and chemical reactions, can be well represented by systems of Partial Differential Equations. In this paper, a numerical procedure is proposed for the fast and robust solution of flow and transport problems in 2D heterogeneous saturated media. The governing equations are spatially discretized with unstructured tria...
متن کاملNumerical Investigation of Island Effects on Depth Averaged Fluctuating Flow in the Persian Gulf
In the present paper simulation of tidal currents on three-dimensional geometry of the Persian Gulf is performed by the solution of the depth averaged hydrodynamics equations. The numerical solution was applied on two types of discritized simulation domain (Persian Gulf); with and without major islands. The hydrodynamic model utilized in this work is formed by equations of continuity and motion...
متن کامل